Abstract

A new turbulence model to calculate complex turbulent heat transfer in separating and reattaching flows is proposed. This new model is a modified version of the latest low-Reynolds-number two-equation heat-transfer model, in which the main improvement is achieved by introducing the Kolmogorov velocity scale, u ε ≡ (νε) 1 4 , instead of the friction velocity u τ , to account for the near-wall and low-Reynolds-number effects in both attached and detached flows. After investigating the characteristics of various time scales for the heat-transfer model, we adopted a composite time scale which gives weight to a shorter scale among the velocity- and temperature-field time scales. It is validated that the present model predicts quite accurately the turbulent heat transfer in separating and reattaching flows downstream of a backward-facing step, which involve most of the essential physics of complex turbulent heat transfer, under various conditions of flow Reynolds number and upstream boundary-layer thickness. In addition, the computational results have revealed several new mechanistic features of the turbulent heat transfer in separating and reattaching flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call