Abstract

The standard tunneling path in transition state theory for reactions such as H+H2→H2+H has been the so-called reaction path, namely the path of steepest ascent to the saddle point. This path is now known to give numerical results for the reaction probability which are in disagreement with the exact quantum mechanical ones by an order of magnitude at low tunneling energies. A new tunneling path corresponding to a line of vibrational endpoints is proposed. It is much shorter and is shown to give results in agreement with the quantum ones to within about a factor of two. A semiclassical basis for choosing this new path is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.