Abstract

A green tunable dispersive liquid-liquid micro extraction (TDLLME) technique was established for the simultaneous enrichment of lead (Pb) and cadmium (Cd) from different lakes water before analysis by flame atomic absorption spectrometry (FAAS). A solvent known as tunable polarity solvent (TPS), mixture of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and 1-decanol, has been employed as extractant in aqueous medium. In first step this mixture can be made polar by slowly bubbling the antisolvent trigger (CO2) through the solution, which makes a monophasic solution. During this step hydrophobic complexes of the metals with 8-hydroxy quinoline (8-HQ) were extracted by TPS. Then the mixture was switched back to hydrophobic one by heating and/or bubbling nitrogen, turning the mixture into two phases again. In second phase the metals were leached out from the complexes entrapped in TPS, by treating with a solution of nitric acid and exposing the mixture to CO2, which switched the mixture into single phase. Then N2 purging and/or heating again turned the mixture into two phases. The acidic aqueous phase containing the metals was introduced to FAAS for analysis, whereas TPS was recycled for next experiment. Different parameters, affecting the efficiency the technique, were optimized by multivariate approach. The method was applied to certified reference material of water and to a real sample spiked with standards of known concentration, to confirm its validity and accuracy. LOD obtained for Pb and Cd were 0.560 and 0.056μgL−1 respectively. The developed method was applied successfully to the real water samples of two lakes of Sindh, Pakistan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.