Abstract

Random numbers play a key role in applications such as industrial simulations, laboratory experimentation, computer games, and engineering problem solving. The design of new true random generators (TRNGs) has attracted the attention of the research community for many years. Designs with little hardware requirements and high throughput are demanded by new and powerful applications. In this paper, we introduce the design of a novel TRNG based on the coherent sampling (CS) phenomenon. Contrary to most designs based on this phenomenon, ours uses self-timed rings (STRs) instead of the commonly employed ring oscillators (ROs). Our design has two key advantages over existing proposals based on CS. It does not depend on the FPGA vendor used and does not need manual placement and routing in the manufacturing process, resulting in a highly portable generator. Our experiments show that the TRNG offers a very high throughput with a moderate cost in hardware. The results obtained with ENT, DIEHARD, and National Institute of Standards and Technology (NIST) statistical test suites evidence that the output bitstream behaves as a truly random variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.