Abstract

A new tripodal receptor for the recognition of monosaccharides is described. The prototypical host 1 features a 1,3,5-substituted 2,4,6-triethylbenzene scaffold bearing three convergent H-bonding units. The binding ability of the t-octyl derivative 1a toward a set of octylglycosides of biologically relevant monosaccharides, including Glc, Gal, Man, and GlcNAc, was investigated by 1H NMR in CDCl3. A protocol for the correct evaluation of binding affinities was established, which can be generally applied for the recognition of monosaccharides by 1H NMR spectroscopy. A three-constant equilibrium model, including 1:1 and 2:1 host-guest association and dimerization of the receptor, was ascertained for the interaction of 1a with all the investigated glycosides. An affinity index, which we defined median binding concentration BC50 in analogy to the IC50 parameter, intended to address the general issue of comparing dimensionally heterogeneous binding data, and a limiting BC0(50)quantity describing intrinsic binding affinities were developed for evaluating the results. BC0(50) values for 1a range from 1 to 6 mM, indicating an intrinsic binding affinity in the millimolar range and a selectivity factor of 5 toward the investigated glycosides. The treatment has been extended to include any generic host-guest system involved in single or multiple binding equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call