Abstract
Abstract In this paper, a new microstructure-dependent sinusoidal beam model for buckling of microbeams is presented using modified strain gradient theory. This microbeam model can take into consideration microstructural and shear deformation effects. The equilibrium equations and corresponding boundary conditions in buckling are derived with the minimum total potential energy principle. Buckling problem of a simply supported microbeam subjected to an axial compressive force is analytically solved by Navier solution procedure. Influences of thickness-to-length scale parameter and slenderness ratios on buckling behavior are discussed in detail. It is observed that the size dependency becomes more important when the thickness of the microbeam is closer to material length scale parameter. Also, it can be said that the effects of shear deformation are more considerable for short and thick beams with lower slenderness ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.