Abstract

AbstractIn a two-layer density-stratified fluid it is known, due to Ball (J. Fluid Mech., vol. 19, 1964, p. 465), that two oppositely travelling surface waves may form a triad resonance with an interfacial wave. Ball claims ‘there are no other interactions’ between two surface waves and one interfacial wave. Contrary to this, here we present a new class of triad resonance that occurs between two co-propagating surface waves and one interfacial wave. While in Ball’s resonance the interfacial wave has a wavelength of about half of two surface waves, in the new resonance presented here the interfacial wave has a much higher wavelength compared to those of surface waves. This, together with the unidirectionality of the participant triplet, makes the realization of the new resonance more likely in real ocean scenarios. We further show, via theoretical analysis and direct simulation, that, unique to this new class of resonance, the triad inevitably undergoes a cascade of (near-) resonance interaction that spreads the energy of initial waves to a number of lower and higher harmonics. The significance of the resonance studied here is, particularly, more emphasized in the littoral zones, where the spectrum refracts toward a unidirectional wave train.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.