Abstract

The performance adaptation method based on the transient measurement data is proposed to generate a dynamic simulation model for gas turbine engines. The performance maps of the compressors and turbines are adjusted by using scaling factors. The time delay in transient temperature measurement is considered in the performance adaptation process by independently modeling a thermocouple section. A new heat transfer correction factor is introduced for the thermocouple modeling. Optimization techniques are employed to find the scaling factors and the heat transfer correction factor. Low-bypass ratio mixed-flow turbofan engines (F100 and F404-GE-400 engines) are employed for testing the proposed method and evaluating its effectiveness. The results reveal that the adapted engine model has good agreement with transient measurement data for the turbofan engines. In particular, the turbine exit temperature from a thermocouple shows a large time delay during transient operation. It has been confirmed that the proposed method can predict the temperatures for the thermocouple and the main flow path, respectively. As a result, the accuracy of the performance adaptation could be improved by considering the time delay for the turbine outlet temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call