Abstract
Transformers are utilized in generation, transmission, and distribution power system network, and face an enormous number of hazards during their course of operation. Frequency response analysis (FRA) is an inexpensive, accurate, and non-destructive technique to explore the transformer mechanical integrity very fast. However, FRA results interpretation is not being automated yet. This study introduces a new setup for FRA measurement that can assist to leave the conventional FRA data interpretation techniques and obtain smart interpretation. Hence, FRA setups and interpretation techniques are studied and formulated in this paper. A new measurement technique is introduced and discussed in detail. Practical studies are performed over distribution and power transformers and FRA data are recorded for inter-disk fault. The analysis of fault severity, which is obatined in this paper, is an advantage of the proposed measurement technique. In this regard, the techniques from machine learning and numerical analysis are employed to train a predictive engine for smart interpretation of FRA data. It is revealed that the proposed intelligent technique is capable of interpreting, detecting, and classifying the transformer winding inter-disk fault and its severity. The new introduced FRA measurement setup is also able to support the online FRA data assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.