Abstract

This paper introduces a new multilevel converter topology for a hybrid HVDC system comprising line-commutated converter (LCC) and voltage source converter (VSC). Among the existing modular multilevel converter (MMC) topologies for the hybrid HVDC, a mixed MMC structure with half-bridge submodules (HBSMs) and full-bridge submodules (FBSMs) has characteristics of reduced system cost, low operation loss, but still keeping capability to cope with dc short-circuit fault. However, it is very difficult for the conventional hybrid MMC structure to balance the submodule capacitor voltages under dc-bus voltage sliding since each MMC arm is a mixture of HBSMs and FBSMs. To solve the defect of the conventional hybrid MMC structure, an asymmetric mixed MMC, in which one arm is made of series-connected HBSMs and other arm is made of FBSMs, is devised. The proposed asymmetric MMC can regulate the dc-bus voltage freely without uncontrollable submodule capacitor voltages. The problems of the conventional MMC structure and the validity of asymmetric MMC are verified by both computer simulation and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call