Abstract

Bulk water molecular dynamics simulations based on a series of atomistic water potentials (TIP3P, TIP4P/Ew, SPC/E and OPC) are compared using new techniques from the field of topological data analysis. The topological invariants (the different degrees of homology) derived from each simulation frame are used to create a series of persistence diagrams from the atomic positions. These are averaged over the simulation time using the persistence image formalism, before being normalised by their total magnitude (the L1 norm) to ensure a size independent descriptor (L1NPI). We demonstrate that the L1NPI formalism is suitable for the analysis of systems where the number of molecules varies by at least a factor of 10. Using standard machine learning techniques, a basic linear SVM, it is shown that differences in water models are able to be isolated to different degrees of homology. In particular, whereas first degree homology is able to distinguish between all atomistic potentials studied, OPC is the only potential that differs in its second degree homology. The L1 normalised persistence images are then used in the comparison of a series of Stillinger–Weber potential simulations to the atomistic potentials and the effects of changing the strength of three-body interactions on the structures is easily evident in L1NPI space, with a reduction in variance of structures as interaction strength increases being the most obvious result. Furthermore, there is a clear tracking in L1NPI space of the λ parameter. The L1NPI formalism presents a useful new technique for the analysis of water and other materials. It is approximately size-independent, and has been shown to contain information as to real structures in the system. We finally present a perspective on the use of L1NPIs and other persistent homology techniques as a descriptor for water solubility.

Highlights

  • The water network problem Understanding the structure and dynamics of water networks is an important task in a wide variety of fields

  • We develop the ideas discussed in [31] and by the use of persistence images [32] are able to develop what we term l1-normalised persistence images (L1NPIs) which take into account the dynamic nature of the molecular dynamics simulations

  • Comparison of persistence images and L1NPIs To demonstrate the usefulness of the L1NPI versus the standard persistence image, we investigate the performance of a linear SVM classifier on systems of the same potential, with different numbers of water molecules

Read more

Summary

Introduction

The water network problem Understanding the structure and dynamics of water networks is an important task in a wide variety of fields. Persistent homology has recently been applied to understanding water networks [31] these methods did not take into account the dynamic nature of such systems. Persistence images For this work, we will be trying to understand simulated water networks through the lens of persistent homology.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.