Abstract

Abstract A powerful new tool for unconformity identification in a range of geological environments is presented together with very strong evidence of its utility. Commonly in an exploration setting correct sequence interpretation has taken years and multiple detailed studies, now with the new tool it can be done quite easily in near real time. Recognition of unconformities in boreholes, particularly where correlation with outcrop is not available, traditionally relies on paleontological methods, normally palynology or micropalaeontology and correlations between wells where sections of the observed sequence are missing. Observations in recently drilled wells in Dubai have provided evidence for another useful tool. While drilling Well A, bulk rock phosphate concentrations were obtained in near real time while drilling using X-ray fluorescence (XRF). These were then plotted against well depth. Phosphate values were taken as indicators of long duration and high intensity of organic production or conversely a low rate of sedimentation. Unconformities were marked by significant and obvious phosphate peaks while drilling in a marine sequence. Higher than average concentration of phosphates in marine environments during periods of non-deposition or very slow deposition have been known for some time but their use as markers for unconformities while drilling has not been widespread due to the practical difficulties with sample analysis. With advances in XRF technology routine wellsite XRF analysis services are now available. Plots of phosphate concentrations in Well B which was drilled through a sub-aerially deposited sequence also showed phosphate peaks, some of which correlated with known and recognisable unconformity surfaces. Further evaluation, particularly comparison with palynology data, showed that the phosphate peaks which did not correlate with known unconformities indicated previously unrecognised unconformities. Phosphate peaks on unconformity surfaces in sub-aerially deposited sequences have not, as far as the authors can determine, been previously recognised. Well C is an older well which penetrated a similar sub-aerially deposited sequence to Well B with no XRD analyses available. Correct interpretation of the Well C sequence was not possible until the key points were derived from the more complete Well B data. Evidence is presented showing that phosphate peaks are practical and useful indicators of unconformities in near real time, especially when interpreted with other geological information. An example is also given of an unconformity which displays no phosphate peak together with an explanation as to why there is no peak. In an exploration setting analysis of phosphate trends can significantly enhance and simplify sequence and palaeoenvironmental interpretation and understanding of regional tectonics thus providing greater insight when planning follow up wells leading to a higher success rate. As such it is a new and novel exploration tool with a potentially high economic value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.