Abstract

For pt.I see ibid., vol.45, no.4, pp.939-54 (1998). The statistical performance of the new 2-D narrowband time-domain root-MUSIC blood velocity estimator described previously is evaluated using both simulated and flow phantom wideband (50% fractional bandwidth) ultrasonic data. Comparisons are made with the standard 1-D Kasai estimator and two other wideband strategies: the time domain correlator and the wideband point maximum likelihood estimator. A special case of the root-MUSIC, the "spatial" Kasai, is also considered. Simulation and flow phantom results indicate that the root-MUSIC blood velocity estimator displays a superior ability to reconstruct spatial blood velocity information under a wide range of operating conditions. The root-MUSIC mode velocity estimator can be extended to effectively remove the clutter component from the sample volume data. A bimodal velocity estimator is formed by processing the signal subspace spanned by the eigenvectors corresponding to the two largest eigenvalues of the Doppler correlation matrix. To test this scheme, in vivo common carotid flow complex Doppler data was obtained from a commercially available color flow imaging system. Velocity estimates were made using a reduced form of this data corresponding to higher frame rates. The extended root-MUSIC approach was found to produce superior results when compared to both 1- and 2-D Kasai-type estimators that used initialized clutter filters. The results obtained using simulated, flow phantom, and in vivo data suggest that increased sensitivity as well as effective clutter suppression can be achieved using the root-MUSIC technique, and this may be particularly important for wideband high frame rate imaging applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.