Abstract

Ti-based immobilized metal affinity chromatography (IMAC) nanomaterial has shown high potential in phosphoproteome mass-spectrometric (MS) analysis. However, the limited surface area and poor solubility will greatly restrict its use in phosphoproteome research. To overcome these two key drawbacks, a novel Ti-based IMAC nanomaterial was prepared by Ti-bonded β-cyclodextrin (β-CD) anchored on the surface of carbon nanotubes (CNTs) (denoted as COOH-CNTs-CD-Ti) and successfully applied as a biofunctional adsorbent for selectively enriching trace phosphopeptides. In the selective enrichment process, CNTs provided greater surface area for the absorption of phosphopeptides, while β-CD also offered a greater opportunity for the interaction between phosphopeptides and Ti4+. COOH-CNTs-CD-Ti with the aforementioned properities exhibited higher selectivity for phosphopeptides from the standard protein digests, the tryptic digests of nonfat milk and human serum, showing a great selective enrichment capability towards complex biological samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.