Abstract

Several password and smart-card based two-factor security remote user authentication protocols for multi-server environment have been proposed for the last two decades. Due to tamper-resistant nature of smart cards, the security parameters are stored in it and it is also a secure place to perform authentication process. However, if the smart card is lost or stolen, it is possible to extract the information stored in smart card using power analysis attack. Hence, the two factor security protocols are at risk to various attacks such as password guessing attack, impersonation attack, replay attack and so on. Therefore, to enhance the level of security, researchers have focused on three-factor (Password, Smart Card, and Biometric) security authentication scheme for multi-server environment. In existing biometric based authentication protocols, keys are generated using fuzzy extractor in which keys cannot be renewed. This property of fuzzy extractor is undesirable for revocation of smart card and re-registration process when the smart card is lost or stolen. In addition, existing biometric based schemes involve public key cryptosystem for authentication process which leads to increased computation cost and communication cost. In this paper, we propose a new multi-server authentication protocol using smart card, hash function and fuzzy embedder based biometric. We use Burrows–Abadi–Needham logic to prove the correctness of the new scheme. The security features and efficiency of the proposed scheme is compared with recent schemes and comparison results show that this scheme provides strong security with a significant efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.