Abstract
Increasing the Gear Ratio (GR) while decreasing the gearbox dimension is a contradiction that mechanical designers are challenged to solve. The increasing importance of fine-tuning high power density designs has led to the development of innovative solutions involving cycloidal and hypocycloidal gears. However, when the required GR increases and the number of the stages raises, the gearbox architecture plays a key role in minimizing the overall dimensions. In the present paper, an innovative gearbox architecture is presented. The new design combines three cycloidal and hypocycloidal gearing stages to achieve a higher GR with respect to a traditional two-stage cycloidal gearbox with the same overall dimension. This architecture is called Nested since it involves stages with internal and external gears arranged one inside the other. A comparison of the proposed solution with the more compact two-stage cycloidal architecture (Wolfrom) is shown. The GRs as a function of the total number of meshing features are discussed as well as the torques acting on each component. Eventually, a design solution is illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.