Abstract

Bidomain modeling of cardiac tissues provides important information about various complex cardiac activities. The cardiac tissue consists of interconnected cells which form fiber-like structures. The fibers are arranged in different orientations within discrete layers or sheets in the tissue, i.e., the fibers within the tissue are rotated. From a mathematical point of view, this rotation corresponds to a general anisotropy in the tissue's conductivity tensors. Since the rotation angle is different at each point, the anisotropic conductivities also vary spatially. Thus, the cardiac tissue should be viewed as an inhomogeneous anisotropic structure. In most of the previous bidomain studies, the fiber rotation has not been considered, i.e., the tissue has been modeled as a homogeneous orthotropic medium. In this paper, we describe a new finite-difference bidomain formulation which accounts for the fiber rotation in the cardiac tissue and hence allows a more realistic modeling of the cardiac tissue. The formulation has been implemented on the data-parallel CM-5 which provides the computational power and the memory required for solving large bidomain problems. Details of the numerical formulation are presented together with its validation by comparing numerical and analytical results. Some computational performance results are also shown. In addition, an application of this new formulation to provide activation patterns within a tissue slab with a realistic fiber rotation is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call