Abstract

ABSTRACTA new thermoelectric concept using large area silicon PN junctions is experimentally demonstrated. In contrast to conventional thermoelectric generators where the n-type and p-type semiconductors are connected electrically in series and thermally in parallel, we demonstrate a large area PN junction made from densified silicon nanoparticles that combines thermally induced charge generation and separation in a space charge region with the conventional Seebeck effect by applying a temperature gradient parallel to the PN junction. In the proposed concept, the electrical contacts are made at the cold side eliminating the need for contacts at the hot side allowing temperature gradients greater than 100K to be applied. The investigated PN junction devices are produced by stacking n-type and p-type nanopowder prior to a densification process. The nanoparticulate nature of the densified PN junction lowers thermal conductivity and increases the intraband traps density which we propose is beneficial for transport across the PN junction thus enhancing the thermoelectric properties. A fundamental working principle of the proposed concept is suggested, along with characterization of power output and output voltages per temperature difference that are close to those one would expect from a conventional thermoelectric generator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call