Abstract
The general theory developed thus far (Sachs, 1971b, c, d) is applied to two-particle systems. An exact bound state solution of the nonlinear field equations of this theory for a particle-antiparticle pair is demonstrated. From the Lagrangian formalism, this solution is shown to predict all of the experimental facts that are conventionally interpreted in terms of ‘pair annihilation’: (1) the energy-momentum four-vector (and each of the four components, separately) are zero, compared with the energy, 2mc2, of the state when the particle and antiparticle are (asymptotically) free and (2) the dynamical properties of this state of positronium make it appear in experimentation as two distinguishable currents, correlated with a 90° phase difference and polarised in a plane that is perpendicular to the direction of propagation of interaction with other charged matter. The latter features are conventionally interpreted as the two photons which are produced in the annihilation event — however, there are no photons in this theory. The spectral distribution of blackbody radiation is then derived from the properties of an ideal gas of such pairs, in their ground states of null energy-momentum, as observed in a finite cavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.