Abstract

The magnetic force microscope (MFM) is established as a valuable tool for the analysis of magnetic structures. The standard design of MFM incorporates a silicon tip coated with a magnetic material. However, these tips are subject to several inherent problems, e.g. changing characteristics over time due to damage or magnetic hysteresis. A new theoretical electromagnetic MFM probe is introduced here. Although electromagnetic MFM has been discussed before by Zhou et al. (J. Vac. Sci. Technol. A 17 (1999) 2233), the design presented here is a different approach. Two different probe iterations and their magnetic field intensity distribution are modelled. The probe imaging capability is compared using the reciprocity principle (Wright and Hill, Appl. Phys. Lett. 68 (1996) 1726) to image the simulated force interaction between a sample and the probe fields. Thus, images of a sample's magnetic distribution are produced by the convolution of the different probe gradient field distributions and the sample magnetisation. Both perpendicular and longitudinal magnetisation patterns were simulated with the different probe iterations. This clearly showed the improvement of the second probe iteration, particularly for longitudinal patterns. The practical use of the new probe is also discussed, and future work outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.