Abstract

The thromboembolic events and microbial infection have been the significant barriers for the long term use of biomaterials in blood-contacting medical devices. The development of new materials with multiple functions including anti-thrombosis and antibacterial surfaces is a high research priority. This study synthesized new biostable and biocompatible polyphosphazene polymers, poly[bis(octafluoropentoxy)phosphazene] (OFP) and crosslinkable OFP, and successfully improved the mechanical strength of polyphosphazenes. Polymers were fabricated into textured films with submicron pillars on the surfaces. The antimicrobial and antithrombotic assays demonstrated that new materials combined with surface physical modification have significant reduction in risk of pathogenic infection and thrombosis, and improve the biocompatibility of current biomaterials in the application of blood-contacting medical devices. It would be interest to biomaterials and bioengineering related communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call