Abstract

A new class of tetraarylcyclopentadienones bearing 3-hydroxy-1-propynyl substituents has been synthesized. One of them, 3,4-bis (4-(3-hydroxy-3-methylbut-1-ynyl) phenyl)-2,5-diphenylcyclopenta-2,4-dienone, exhibits pronounced aggregation properties in various organic solvents responding to thermal and ultrasound stimuli and represents the first example of a tetraarylcyclopentadienone based low molecular weight organogelator. The hydroxydimethyl group on the ethynyl substituent proved to be essential to perform the gelation process. The 1H NMR analysis and FT-IR spectroscopy suggested that the intermolecular π–π and hydrogen bonding interactions of the gelator with the solvent are the main driving forces for the supramolecular assembly. The SEM images of xerogels show the characteristic gelation morphologies of 3D fibrous network structures. Fluorescence and UV/Vis absorption studies provided more information to define the molecular packing model in the gelation state. In addition the obtained gels show selective response to the fluoride anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.