Abstract

Choosing an appropriate statistic and precisely evaluating the false discovery rate (FDR) are both essential for devising an effective method for identifying differentially expressed genes in microarray data. The t-type score proposed by Pan et al. (2003) succeeded in suppressing false positives by controlling the underestimation of variance but left the overestimation uncontrolled. For controlling the overestimation, we devised a new test statistic (variance stabilized t-type score) by placing shrunken sample variances of the James-Stein type in the denominator of the t-type score. Since the relative superiority of the mean and median FDRs was unclear in the widely adopted Significance Analysis of Microarrays (SAM), we conducted simulation studies to examine the performance of the variance stabilized t-type score and the characteristics of the two FDRs. The variance stabilized t-type score was generally better than or at least as good as the t-type score, irrespective of the sample size and proportion of differentially expressed genes. In terms of accuracy, the median FDR was superior to the mean FDR when the proportion of differentially expressed genes was large. The variance stabilized t-type score with the median FDR was applied to actual colorectal cancer data and yielded a reasonable result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.