Abstract

ABSTRACT We apply the marked correlation function test proposed by Armijo et al. (Paper I) to samples of luminous red galaxies (LRGs) from the final data release of the Sloan Digital Sky Survey (SDSS) III. The test assigns a density-dependent mark to galaxies in the estimation of the projected marked correlation function. Two gravity models are compared: general relativity (GR) and $f(R)$ gravity. We build mock catalogues which, by construction, reproduce the measured galaxy number density and two-point correlation function of the LRG samples, using the halo occupation distribution model (HOD). A range of HOD models give acceptable fits to the observational constraints, and this uncertainty is fed through to the error in the predicted marked correlation functions. The uncertainty from the HOD modelling is comparable to the sample variance for the SDSS-III LRG samples. Our analysis shows that current galaxy catalogues are too small for the test to distinguish a popular $f(R)$ model from GR. However, upcoming surveys with a better measured galaxy number density and smaller errors on the two-point correlation function, or a better understanding of galaxy formation, may allow our method to distinguish between viable gravity models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call