Abstract

Fly-rock caused by blasting is one of the dangerous side effects that need to be accurately predicted in open-pit mines. This study proposed a new technique to predict the distance of fly-rock based on an ensemble of support vector regression models (SVRs) and Lasso and elastic-net regularized generalized linear model (GLMNET), called SVRs–GLMNET. It was developed based on a combination of six SVR models and a GLMNET model. Accordingly, the dataset including 210 experimental data was divided into three parts, i.e., training, validating, and testing. Of the whole dataset, 70% was used for the development of the six SVR models first as the sub-models. Subsequently, 20% of the entire dataset (the validating dataset) was used to predict fly-rock based on the six developed SVR models. The predicted results from the six developed SVR models were used as the input variables to establish the GLMNET model (i.e., SVRs–GLMNET model). Finally, the remaining 10% of the dataset was used for testing the performance of the proposed SVRs–GLMNET model. A comparison and evaluation of the six developed SVR models and the proposed SVRs–GLMNET model were implemented based on five statistical criteria, such as mean absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square error (RMSE), variance account for (VAF), and determination of correlation (R2). The results indicated that the proposed SVRs–GLMNET model provided the most dominant performance in predicting the distance of fly-rock caused by bench blasting in this study with an RMSE of 3.737, R2 of 0.993, MAE of 3.214, MAPE of 0.018, and VAF of 99.207. Whereas, the other models yielded poorer accuracy with RMSE of 7.058–12.779, R2 of 0.920–0.972, MAE of 3.438–7.848, MAPE of 0.021–0.055, and VAF of 90.538–97.003.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.