Abstract

This paper is the first in a series of investigations having the overall objective of developing a new technique for treating the slow viscous motion past finite assemblages of particles of arbitrary shape. The new method, termed the multi-pole representation technique, is based on the theory that any object conforming to a natural co-ordinate system in a particle assemblage can be approximated by a truncated series of multi-lobular disturbances in which the accuracy of the representation is systematically improved by the addition of higher order multipoles. The essential elements of this theory are illustrated by examining the flows past finite line arrays of axisymmetric bodies such as spheres and spheroids which conform to special natural co-ordinate systems. It is demonstrated that this new procedure converges more rapidly and is simpler to use than the method of reflexions and represents the desired boundaries more precisely than the point-force approximation even when the objects are touching one another. Comparison of these solutions with the exact solutions of Stimson & Jeffery (1926) for the two sphere problem demonstrates the rapidity of convergence of this multipole procedure even when the spheres are touching. Drag results are also presented for flows past chains containing up to 101 spheres as well as for chains containing up to 15 prolate or oblate spheroids. The potential value of the technique is suggested by the rapidity with which the drag calculations were made, the 101 sphere problem requiring about 10 seconds on an IBM 360–65 computer to determine both the fluid flow and the drag coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call