Abstract
Abnormal accumulation of hyperphosphorylated tau protein plays a pivotal role in a collection of neurodegenerative diseases named tauopathies, including Alzheimer's disease (AD). We have recently conceptualized the design of hetero-bifunctional chimeras for selectively promoting the proximity between tau and phosphatase, thus specifically facilitating tau dephosphorylation and removal. Here, we sought to optimize the construction of tau dephosphorylating-targeting chimera (DEPTAC) and obtained a new chimera D14, which had high efficiency in reducing tau phosphorylation both in cell and tauopathy mouse models, while showing limited cytotoxicity. Moreover, D14 ameliorated neurodegeneration in primary cultured hippocampal neurons treated with toxic tau-K18 fragments, and improved cognitive functions of tauopathy mice. These results suggested D14 as a cost-effective drug candidate for the treatment of tauopathies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.