Abstract

To validate nonlinear gyrokinetic simulations of electron temperature turbulence, the experimental correlation electron cyclotron emission (CECE) measurements are to be compared using a synthetic CECE diagnostic, which generates modeled CECE measurement quantities by implementing realistic measurement parameters (e.g., spatial and wavenumber resolutions, radial location, etc.) to nonlinear gyrokinetic simulations. In this work, we calculate the radial and vertical spatial and wavenumber transfer functions, which are defined by the electron cyclotron emission emissivity radial profile and vertical probing antenna pattern, respectively. These transfer functions are applied to nonlinear gyrokinetic simulations of electron temperature turbulence using the continuum gyrokinetic code. A simultaneous comparison of the experimental electron temperature turbulence power spectrum and root-mean-square (RMS) level, as well as the radial correlation length with the new synthetic CECE diagnostic at a core location ρ ∼ 0.75 in an L-mode DIII-D tokamak plasma, is presented. The preliminary result shows that the synthetic CECE output underestimates the RMS level by ∼42% and overestimates the radial correlation length by ∼40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.