Abstract

ABSTRACTQuality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.