Abstract

Curcumin has ignited global interest as an elite drugable molecule, owing to its time-honoured pharmacological activities against diverse human ailments. Limited natural accessibility and poor oral bioavailability caused major hurdles in the curcumin-based drug development process. We report the first successful testimony of curcumin and its glucoside synthesis in Atropa belladonna hairy roots (HR) through metabolic engineering. Re-routing the inherent biosynthetic precursors of the phenylpropanoid pathway of A. belladonna by heterologous expression of key curcumin biosynthetic pathway genes (i.e., Diketide-CoA synthase-DCS and Curcumin synthase-CURS3) and glucosyltransferase gene (CaUGT2) resulted in the production of curcumin and its glucoside in HR clones. Under shake-flask cultivation, the PGD2-HR1clone bearing DCS/ CURS3 genes showed the maximum curcumin yield (180.62 ± 4.7 μg/g DW), while the highest content of curcumin monoglucoside (32.63 ± 2.27 μg/g DW) along with curcumin (67.89 ± 2.56 μg/g DW) were noted in the PGD3-HR3 clone co-expressing DCS/CURS3 and CaUGT2 genes. Bioreactor up-scaling showed yield improvements in the PGD2-HR1 (2.3 fold curcumin) and the PGD3-HR3 clone (0.9 and 1.65 folds of curcumin-monoglucoside and curcumin respectively). These findings proved the advantageous use of HR cultures as the production source for curcumin and its glucoside, which remained unexplored so far.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call