Abstract

Spatial resolution of an ultrasound image is limited by diffraction of ultrasound as it propagates along the axial direction. This paper proposes a method for reducing the diffraction spreading effect of ultrasound by using a synthetic aperture focusing (SAF) method that uses plane waves instead of spherical waves. The new method performs data acquisition and beamforming in the same manner as conventional SAF methods. The main difference is that all array elements are used on each firing to generate a plane wave, the traveling angle of which varies with the position of a receive subaperture. On reception, each scan line is formed by synthesizing RF samples acquired by relevant receive subapertures with delays to force the plane waves to meet at each imaging point. Theoretical analysis and computer simulation with infinite transmit aperture show that the proposed method is capable of suppressing the diffraction of ultrasound and especially causing the lateral beam width to remain unchanged beyond a certain depth determined by the size of a receive subaperture and the maximum traveling angle of plane waves. It is demonstrated that the proposed method is realizable using a linear array transducer. It is also shown that the lateral radiation pattern produced by the proposed method has smaller beam width than that using conventional SAF methods in the region of interest because it suppresses the diffraction of ultrasound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.