Abstract

A new type of symmetry in the large deviation function of a time-integrated current is introduced. This current is different from the fluctuating entropy production for which the large deviation function is symmetric in the content of the fluctuation theorem. The origin of this symmetry, similar to that of the Gallavotti-Cohen-Evans-Morriss symmetry, is related to time-reversal. The symmetry is more unveiled when one performs an appropriate grouping of stochastic trajectories in the space of microscopic configurations. It turns out that the characteristic polynomial of the modified generator of this current is not symmetric; however, its minimum eigenvalue is symmetric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call