Abstract

This work presents a new analysis method for two-symbol symbolic time series based on the time-to-space mapping achieved through a device of current carrying circular rings. An algorithm based on the theory of prime numbers is proposed for the approximate estimation of the stratified magnetic field produced by the aforementioned device. The main property of the specific algorithm is that it quantizes the stratified magnetic field. If a two-symbol symbolic time series is used to determine the flow directions of the rings’ currents, a time-to-space mapping of the dynamics of the system producing the time series is observed. A unique “fingerprint” of the symbolic dynamics is shaped by the spatial allocation of the values of the six-valued symmetric quantized magnetic field produced by the device. This allows for the quantitative evaluation of the original system’s dynamics by analyzing the resultant quantized magnetic field values space allocation, in a spectrum ranging from the lack of dynamics (randomness) to the presence of dynamics at all scales (criticality). Two examples of application–corresponding to the extremes of the dynamics spectrum, specifically, for symbolic time series resulting from (a) a random numbers generator and (b) the spin alternation of 2D-Ising in its critical state, verify the reliable time-to-space mapping of the involved symbolic dynamics. Moreover, an application to the symbolic sequence produced by the DNA of the GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) human gene is presented as a real-world, intermediate dynamics case. The proposed symbolic time series analysis method presents the advantage that can take into account information related to both symbols, which is particularly useful in analyzing two-symbol time series of relatively short length where the probabilities of occurrence of the two symbols are not equal. By inferring the universality class of an artificial-neural-network-based hybrid spin model through the value of the critical exponent δ, it is shown that for such time series, the proposed method provides a unique way to expose the real dynamics of the underlying complex system, in contrast to the analysis of waiting times in the time domain that leads to an ambiguous quantitative result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.