Abstract

We present a new method for solving regular boundary value problems for linear ordinary differential equations with constant coefficients (the case of variable coefficients can be adopted readily but is not treated here). Our approach works directly on the level of operators and does not transform the problem to a functional setting for determining the Green’s function. We proceed by representing operators as noncommutative polynomials, using as indeterminates basic operators like differentiation, integration, and boundary evaluation. The crucial step for solving the boundary value problem is to understand the desired Green’s operator as an oblique Moore–Penrose inverse. The resulting equations are then solved for that operator by using a suitable noncommutative Gröbner basis that reflects the essential interactions between basic operators. We have implemented our method as a Mathematica™ package, embedded in the TH ∃ OREM ∀ system developed in the group of Prof. Bruno Buchberger. We show some computations performed by this package.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.