Abstract

This paper presents a symbiotic evolution-based fuzzy-neural diagnostic system (SE-FNDS) for fault diagnosis of propeller–shaft marine propulsion systems. The SE-FNDS combination of fuzzy modeling, back-propagation training and symbiotic evolution function auto-generates its own optimal fuzzy-neural architecture, a significant advantage over previous time-consuming manual parameter determination. Four hundred samples from a test propeller–shaft system are taken over a range of 100–500 rpm, during normal and experimentally induced faulty operation. This database is applied as input/output rule generation and training data for the fuzzy-neural network. Comparison of system construction time and diagnostic accuracy is made by applying the same database to SE-FNDS and four traditional systems. Compared to traditional methods, diagnostic decisions from SE-FNDS show 94.17% agreement with real conditions and less CPU time for system construction. Two nonlinear function approximations are also used to demonstrate the proposed system. The presented design is useful as a core module for more advanced computer-assisted diagnostic systems and for direct application in marine propulsion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.