Abstract
In this paper, we propose an alternative keyword spotting method relying on confidence measures and support vector machines. Confidence measures are computed from phone information provided by a Hidden Markov Model based speech recognizer. We use three kinds of techniques, i.e., arithmetic, geometric and harmonic means to compute a confidence measure for each word. The acceptance/rejection decision of a word is based on the confidence vector processed by the SVM classifier for which we propose a new Beta kernel. The performance of the proposed SVM classifier is compared with spotting methods based on some confidence means. Experimental results presented in this paper show that the proposed SVM classifier method improves the performances of the keyword spotting system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.