Abstract
Time estimation in new product development (NPD) projects is often a complex problem due to its nonlinearity and the small quantity of data patterns. Support vector regression (SVR) based on statistical learning theory is introduced as a new neural network technique with maximum generalization ability. The SVR has been utilized to solve nonlinear regression problems successfully. However, the applicability of the SVR is highly affected due to the difficulty of selecting the SVR parameters appropriately. The imperialist competitive algorithm (ICA) as a socio-politically inspired optimization strategy is employed to solve the real world engineering problems. This optimization algorithm is inspired by competition mechanism among imperialists and colonies, in contrast to evolutionary algorithms. This paper presents a new model integrating the SVR and the ICA for time estimation in NPD projects, in which ICA is used to tune the parameters of the SVR. A real data set from a case study of an NPD project in a manufacturing industry is presented to demonstrate the performance of the proposed model. In addition, the comparison is provided between the proposed model and conventional techniques, namely nonlinear regression, back-propagation neural networks (BPNN), pure SVR and general regression neural networks (GRNN). The experimental results indicate that the presented model achieves high estimation accuracy and leads to effective prediction. Highlights? Proposing a new support vector model to capture data patterns of time intervals. ? Employing imperialist competitive algorithm to optimize the parameters of SVR. ? Presenting a real case study in a manufacturing industry in the NPD environment. ? Providing a comparison between the proposed model and conventional techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.