Abstract
Although the kernel support vector machine (SVM) outperforms linear SVM, its application to real world problems is limited because the evaluation of its decision function is computationally very expensive due to kernel expansion. On the other hand, additive kernel (AK) SVM enables fast evaluation of a decision function using look-up tables (LUTs). The AKs, however, assume a specific functional form for kernels such as the intersection kernel (IK) or χ2 kernel, and are problematic in that their performance is seriously degraded when a given problem is highly nonlinear. To address this issue, an optimal additive kernel (OAK) is proposed in this paper. The OAK does not assume any specific kernel form, but the kernel is represented by a quantized Gram table. The training of the OAK SVM is formulated as semi-definite programming (SDP), and it is solved by convex optimization. In the experiment, the proposed method is tested with 2D synthetic datasets, UCI repository datasets and LIBSVM datasets. The experimental results show that the proposed OAK SVM has better performance than the previous AKs and RBF kernel while maintaining fast computation using look-up tables.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.