Abstract
A new Multi-Spiking Neural Network (MuSpiNN) model is presented in which information from one neuron is transmitted to the next in the form of multiple spikes via multiple synapses. A new supervised learning algorithm, dubbed Multi-SpikeProp, is developed for training MuSpiNN. The model and learning algorithm employ the heuristic rules and optimum parameter values presented by the authors in a recent paper that improved the efficiency of the original single-spiking Spiking Neural Network (SNN) model by two orders of magnitude. The classification accuracies of MuSpiNN and Multi-SpikeProp are evaluated using three increasingly more complicated problems: the XOR problem, the Fisher iris classification problem, and the epilepsy and seizure detection (EEG classification) problem. It is observed that MuSpiNN learns the XOR problem in twice the number of epochs compared with the single-spiking SNN model but requires only one-fourth the number of synapses. For the iris and EEG classification problems, a modular architecture is employed to reduce each 3-class classification problem to three 2-class classification problems and improve the classification accuracy. For the complicated EEG classification problem a classification accuracy in the range of 90.7%-94.8% was achieved, which is significantly higher than the 82% classification accuracy obtained using the single-spiking SNN with SpikeProp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.