Abstract

The classical probabilistic reliability theory and fuzzy reliability theory cannot directly measure the uncertainty of structural reliability with uncertain variables, i.e., subjective random and fuzzy variables. In order to simultaneously satisfy the duality of randomness and subadditivity of fuzziness in the reliability problem, a new quantification method for the reliability of structures is presented based on uncertainty theory, and an uncertainty-theory-based perspective of classical Cornell reliability index is explored. In this paper, by introducing the uncertainty theory, we adopt the uncertain measure to quantify the reliability of structures for the subjective probability or fuzzy variables, instead of probabilistic and possibilistic measures. We utilize uncertain variables to uniformly represent the subjective random and fuzzy parameters, based on which we derive solutions to analyze the uncertainty reliability of structures with uncertainty distributions. Moreover, we propose the Cornell uncertainty reliability index based on the uncertain expected value and variance. Experimental results on three numerical applications demonstrate the validity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.