Abstract

The Hopfield network is one of the easiest types, and its architecture is such that each neuron in the network connects to the other, thus called a fully connected neural network. In addition, this type is considered auto-associative memory, because the network returns the pattern immediately upon recognition, this network has many limitations, including memory capacity, discrepancy, orthogonally between patterns, weight symmetry, and local minimum. This paper proposes a new strategy for designing Hopfield based on XOR operation; A new strategy is proposed to solve these limitations by suggesting a new algorithm in the Hopfield network design, this strategy will increase the performance of Hopfield by modifying the architecture of the network, the training and the convergence phases, the proposed strategy based on size of pattern but will avoid learning similar pattern many time, whereas the new strategy XOR shows tolerance in the presence of noise-distorted patterns, infinite storage capacity and pattern inverse value. Experiments showed that the suggested method produced promising results by avoiding the majority of the Hopfield network's limitations. In additional it learns to recognize an infinite number of patterns with varying sizes while preserving a suitable noise ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call