Abstract

Isostructural multicomponent crystals provide a promising way for fine-tuning physicochemical properties, whereas their design remains quite challenging. The purpose of this work was to provide a new strategy for obtaining isostructural multicomponent crystals by introducing coformers with functional group positional isomerism. Five isostructural salts of an antitumor drug dimethylaminomicheliolide (DMAMCL) were reported and designed with a series of dihydroxybenzoic acid regioisomers for the first time, which were identified by power and single-crystal X-ray diffractions. Similar lattice parameters suggested these obtained salts may have the same crystal packing mode. The quantitative similarity parameters via XPac, CrystalCMP and Mercury program further proved these crystal structures are 3D isostructural. Hirshfeld surface maps and 2D fingerprint plots show that the isostructural salts have similar intermolecular interactions. Compared with DMAMCL, obvious improvement was observed in the thermal stability, hygroscopicity, and solubility of these isostructural salts. Meanwhile, isostructural crystals may have different physicochemical properties, even though the shape and molecular size are similar and the packing of crystal structures is equally matched.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call