Abstract

AbstractActuators have shown great promise in many fields including soft robotics. Since reconfiguration allows actuators to change their actuation mode, it is considered a key characteristic for new‐generation adaptive actuators. However, it remains a challenge to design simple and universal methods to fabricate actuators that can be reconfigured to allow diverse actuation modes. Here, a macroscopically discretionary healing‐assembly strategy to fabricate reconfigurable soft actuators based on intrinsic self‐healing poly(dimethylglyoxime‐urethane) (PDOU) elastomers is developed. The PDOU elastomers with different degrees of crosslinking show different responsiveness to solvents, and are seamlessly healed. Crosslinked and non‐crosslinked PDOU elastomers as building units are healing‐assembled into actuators/robots with diverse actuation behaviors. Notably, the assembled actuators/robots are readily reprogrammed to exhibit multiple actuation modes by simply tailoring and reassembling without any external stimuli. This work paves a new, simple, powerful, and universal method to construct sophisticated soft robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call