Abstract

This article is devoted to the development of a new heuristic algorithm for the solution of the general variational inequality arising in frictional contact problems. The existing algorithms devised for the treatment of the variational inequality representing frictional contact rely on the decomposition of the physical problem into two sub-problems which are then solved iteratively. In addition, the penalty function method and/or the regularization techniques are typically used in the solution of these reduced sub-problems. These techniques introduce user-defined parameters which could influence the convergence and accuracy of the solution. The new method presented in this article overcomes these difficulties by providing a solution for the general variational inequality without decomposition into sub-problems. This is accomplished using a new heuristic algorithm which utilizes mathematical programming techniques, and thus avoids the use of penalty or regularization methods. The versatility and reliability of the developed algorithm were demonstrated through implementation to the case of frictional contact of an elastic hollow cylinder with a rigid foundation. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.