Abstract
Markov chain Monte Carlo (MCMC) methods have become popular as a basis for drawing inference from complex statistical models. Two common difficulties with MCMC algorithms are slow mixing and long run-times, which are frequently closely related. Mixing over the entire state space can often be aided by careful tuning of the chain's transition kernel. In order to preserve the algorithm's stationary distribution, however, care must be taken when updating a chain's transition kernel based on that same chain's history. In this paper we introduce a technique that allows the transition kernel of the Gibbs sampler to be updated at user specified intervals, while preserving the chain's stationary distribution. This technique seems to be beneficial both in increasing efficiency of the resulting estimates (via Rao-Blackwellization) and in reducing the run-time. A reinterpretation of the modified Gibbs sampling scheme introduced in terms of auxiliary samples allows its extension to the more general Metropolis-Hastings framework. The strategies we develop are particularly helpful when calculation of the full conditional (for a Gibbs algorithm) or of the proposal distribution (for a Metropolis-Hastings algorithm) is computationally expensive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Statistical Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.