Abstract

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus‐obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium@carbon cubes (Ge@CC)), exhibits a high tap density and improved electronic conductivity. Compared to carbon‐coated germanium bulks, the Ge@CC material shows excellent electrochemical properties in terms of both rate capability and cycling stability, due to the unique cubic core–shell structure and the effective carbon coating, so that the Ge@CC electrode delivers ≈497 mA h g−1 at a current rate of 30 C and shows excellent cycling stability of 1065.2 mA h g−1 at 0.5 C for over 500 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.