Abstract

Simple SummaryMAGI1, 2, and 3 belong to a subgroup of the MAGUK family of scaffolding proteins, and are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. MAGIs associate with cell surface receptors, junctional complexes, and interact selectively with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin, and YAP1 proto-oncogenes. The regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways, on the one hand, the downmodulation of MAGIs in various types of cancers, and its physiopathological significance, on the other, make these scaffolding proteins considered to be tumor suppressors. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs (lncRNAs) that act as promoters or suppressors of tumors in a tissue-dependent manner by sponging some sets of miRNAs or by regulating epigenetic processes. This review details current knowledge of paths followed by the three MAGIs to control carcinogenesis.Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.

Highlights

  • The cellular response to external stimuli e.g., hormones, growth factor, cell–cell contact, stress requires the spatio-temporal integration of the several signaling pathways to produce an adapted biological response in terms of metabolism, proliferation, differentiation, cell–cell interaction, migration, or cell death

  • The use of a polyA site in the 2nd intron of MAGI1 upstream the sequence encoding the GuK domain leads to the expression of an mRNA lacking 21 exons in the 3-end, whereas the premature polyadenylation of MAGI3 produces a truncated protein depleted of PDZ2-PDZ5 [41,42]

  • We demonstrated that the inhibition of the PI3K/ AKT pathways by the Phosphatase and tensin homolog (PTEN)/MAGI1 signalosome exerts a critical role in restraining the invasive phenotype [22,170]

Read more

Summary

A New Story of the Three Magi

Simple Summary: MAGI1, 2, and 3 belong to a subgroup of the MAGUK family of scaffolding proteins, and are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. MAGIs associate with cell surface receptors, junctional complexes, and interact selectively with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin, and YAP1 proto-oncogenes. The regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways, on the one hand, the downmodulation of MAGIs in various types of cancers, and its physiopathological significance, on the other, make these scaffolding proteins considered to be tumor suppressors. MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs (lncRNAs) that act as promoters or suppressors of tumors in a tissue-dependent manner by sponging some sets of miRNAs or by regulating epigenetic processes.

Introduction
MAGI Molecular Partners
MAGIs Expression and Prognosis
Findings
MAGI ceRNAs in Carcinogenesis
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call