Abstract

New techniques for more accurate unsupervised segmentation of lung tissues from Low Dose Computed Tomography (LDCT) are proposed. In this paper we describe LDCT images and desired maps of regions (lung and the other chest tissues) by a joint Markov-Gibbs random field model (MGRF) of independent image signals and interdependent region labels but focus on most accurate model identification. To better specify region borders, each empirical distribution of signals is precisely approximated by a Linear Combination of Discrete Gaussians (LCDG) with positive and negative components. We modify a conventional Expectation-Maximization (EM) algorithm to deal with the LCDG and develop a sequential EM-based technique to get an initial LCDG-approximation for the modified EM algorithm. The initial segmentation based on the LCDG-models is then iteratively refined using a MGRF model with analytically estimated potentials. Experiments on real data sets confirm high accuracy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.