Abstract
ABSTRACTIn the present study, residence time distribution (RTD) of an industrial ball mill operating in closed-circuit with hydrocyclones was measured. Several probability distribution functions (PDFs) constituting exponential, Weibull, Gamma, logistic, normal, and lognormal were applied to obtained RTD results and evaluated based on Anderson-Darling statistic (AD) and associated p-value indices. In addition, three most common empirical RTD models (i.e., perfect mixer, N-Mixer and Weller) were fitted to the given practical data. Aside from assessment of coefficient determination (R2) for each model, a factor of incorporating the number of model parameters was considered using Bayesian information criterion, low of iterated logarithm criterion and Akaike information criterion. It was revealed that Weibull PDF is fitted reasonably well to the measured experimental data compared with the other PDFs. Despite the relative variance (σ2) of N-Mixer model was slightly less than the corresponded value of Weller model, the goodness of fit criterion (R2) and all four information criteria (IC) showed better results for Weller model. Therefore, one large with two small tanks in series along with a dead time was selected as the best model from the statistical point of view. Finally, it was concluded that the RTD models must be evaluated not only on the basis of goodness of fit but also the number of model parameters should be taken into account.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.