Abstract

Brittle materials such as ceramics are subject to fracture without warning. Because non-destructive techniques are unreliable for determining potential fracture sources in ceramic materials one must rely on statistical analysis of laboratory strength data. This data is used to determine the minimum strength, and its uncertainty, of a set of specimens, and then must translate this laboratory data into a projection of the reliability of components manufactured from the material. This paper sets forth new guidelines for the choice of a statistical methodology to fit the laboratory data and puts forth a procedure – known as tolerance limits and coverage – to extrapolate this data to predict component reliability. Data on a borosilicate glass is used to demonstrate the usefulness of this procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.